假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题方案
第一种思路
标签:数学
如果观察数学规律,可知本题是斐波那契数列,那么用斐波那契数列的公式即可解决问题,公式如下:
$$
F_n = 1/\sqrt{5}\Big[\Big(\frac{1+\sqrt{5}}{2}\Big)^n-\Big(\frac{1-\sqrt{5}}{2}\Big)^n\Big]
$$
时间复杂度:O(logn)
第一种思路代码
1 | /** |
第二种思路
标签:动态规划
本问题其实常规解法可以分成多个子问题,爬第 n 阶楼梯的方法数量,等于 2 部分之和
爬上 n-1n−1 阶楼梯的方法数量。因为再爬 1 阶就能到第 n 阶
爬上 n-2n−2 阶楼梯的方法数量,因为再爬 2 阶就能到第 n 阶
所以我们得到公式 dp[n] = dp[n-1] + dp[n-2]dp[n]=dp[n−1]+dp[n−2]
同时需要初始化 dp[0]=1dp[0]=1 和 dp[1]=1dp[1]=1
时间复杂度:O(n)
第二种思路代码
1 | /** |
作者:guanpengchn
链接:https://leetcode-cn.com/problems/climbing-stairs/solution/hua-jie-suan-fa-70-pa-lou-ti-by-guanpengchn/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
__END__